Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 261
Filtrar
1.
Plant Cell Environ ; 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38567814

RESUMO

Phosphorus (P)-hyperaccumulators for phytoextraction from P-polluted areas generally show rapid growth and accumulate large amounts of P without any toxicity symptom, which depends on a range of physiological processes and gene expression patterns that have never been explored. We investigated growth, leaf element concentrations, P fractions, photosynthetic traits, and leaf metabolome and transcriptome response in amphibious P-hyperaccumulators, Polygonum hydropiper and P. lapathifolium, to high-P exposure (5 mmol L-1), with 0.05 mmol L-1 as the control. Under high-P exposure, both species demonstrated good growth, allocating more P to metabolite P and inorganic P (Pi) accompanied by high potassium and calcium. The expression of a cluster of unigenes associated with photosynthesis was maintained or increased in P. lapathifolium, explaining the increase in net photosynthetic rate and the rapid growth under high-P exposure. Metabolites of trehalose metabolism, including trehalose 6-phosphate and trehalose, were sharply increased in both species by the high-P exposure, in line with the enhanced expression of associated unigenes, indicating that trehalose metabolic pathway was closely related to high-P tolerance. These findings elucidated the physiological and molecular responses involved in the photosynthesis and trehalose metabolism in P-hyperaccumulators to high-P exposure, and provides potential regulatory pathways to improve the P-phytoextraction capability.

2.
Eco Environ Health ; 3(2): 183-191, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38646095

RESUMO

Dihalogenated nitrophenols (2,6-DHNPs), an emerging group of aromatic disinfection byproducts (DBPs) detected in drinking water, have limited available information regarding their persistence and toxicological risks. The present study found that 2,6-DHNPs are resistant to major drinking water treatment processes (sedimentation and filtration) and households methods (boiling, filtration, microwave irradiation, and ultrasonic cleaning). To further assess their health risks, we conducted a series of toxicology studies using zebrafish embryos as the model organism. Our findings reveal that these emerging 2,6-DHNPs showed lethal toxicity 248 times greater than that of the regulated DBP, dichloroacetic acid. Specifically, at sublethal concentrations, exposure to 2,6-DHNPs generated reactive oxygen species (ROS), caused apoptosis, inhibited cardiac looping, and induced cardiac failure in zebrafish. Remarkably, the use of a ROS scavenger, N-acetyl-l-cysteine, considerably mitigated these adverse effects, emphasizing the essential role of ROS in 2,6-DHNP-induced cardiotoxicity. Our findings highlight the cardiotoxic potential of 2,6-DHNPs in drinking water even at low concentrations of 19 µg/L and the beneficial effect of N-acetyl-l-cysteine in alleviating the 2,6-DHNP-induced cardiotoxicity. This study underscores the urgent need for increased scrutiny of these emerging compounds in public health discussions.

3.
J Fluoresc ; 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38647959

RESUMO

In this study, a novel coordination polymer {Co2(Oaobtc)(bpe)(H2O)4]}n (1) was synthesized under hydrothermal conditions using a hybrid ligand synthesis method, where H4Oobtc represents 2,3,3'-tricarboxylate azobenzene, and bpe represents 1,2-bis(4-pyridyl)ethylene. The obtained CP1 was characterized by elemental analysis (EA), powder X-ray diffraction (PXRD), and thermal gravimetric analysis (TGA). Fluorescence testing confirmed the excellent photoluminescent performance of compound 1, indicating its potential as a cyan-emitting fluorescent material. Hyaluronic acid (HA) and carboxymethyl chitosan (CMCS) are natural polysaccharides known for their biocompatibility. HA/CMCS hydrogels were synthesized using a chemical synthesis method, featuring a three-dimensional network structure with interconnected pores, and an average pore size of 314.75 ± 11.25 µm. The characterization of the taxotere-loaded hydrogel was performed using infrared spectroscopy, confirming the effective encapsulation of the drug within the hydrogel. Utilizing taxotere as a model drug, a novel taxotere-loaded metal gel was synthesized, and its anticancer efficacy was evaluated. Furthermore, the influence of different pH levels on drug release rate was investigated. Finally, the encapsulation and release of taxotere in the hydrogel were studied using UV-visible spectroscopy.

4.
Environ Pollut ; 348: 123883, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38548154

RESUMO

The escalating focus on the environmental occurrence and toxicology of emerging pollutants underscores the imperative need for a profound exploration of their metabolic transformations mediated by human CYP450 enzymes. Such investigations have the potential to unravel the intricate metabolite profiles, substantially altering the toxicological outcomes. In this study, we integrated the computational simulations with in vitro metabolism experiments to investigate the metabolic activity and mechanism of an emerging pollutant, 1,3,5-tris(2,3-dibromopropyl)-1,3,5-triazinane-2,4,6-trione (TDBP-TAZTO), catalyzed by human CYP450s. The results highlight the important contributions of CYP2E1, 3A4 and 2C9 to the biotransformation of TDBP-TAZTO, leading to the identification of four distinct metabolites. The effective binding conformations governing biotransformation reactions of TDBP-TAZTO within active CYP450s are unveiled. Structural instability of primary hydroxyTDBP-TAZTO products suggests three potential outcomes: (1) generation of an alcohol metabolite through successive debromination and reduction reactions, (2) formation of a dihydroxylated metabolite through secondary hydroxylation by CYP450, and (3) production of an N-dealkylated metabolite via decomposition and isomerization reactions in the aqueous environment. The formation of a desaturated debrominated metabolite may arise from H-abstraction and barrier-free Br release during the primary oxidation, potentially competing with the generation of hydroxyTDBP-TAZTO. These findings provide detailed mechanistic insight into TDBP-TAZTO biotransformation by CYP450s, which can enrich our understanding of the metabolic fate and associated health risk of this chemical.


Assuntos
Poluentes Ambientais , Retardadores de Chama , Humanos , Retardadores de Chama/metabolismo , Triazinas/análise , Sistema Enzimático do Citocromo P-450/metabolismo , Biotransformação , Oxirredução
5.
Sheng Wu Gong Cheng Xue Bao ; 40(3): 786-798, 2024 Mar 25.
Artigo em Chinês | MEDLINE | ID: mdl-38545977

RESUMO

Rhamnolipids (RLs) have emerged as one of the most promising classes of biosurfactants. The ratio of mono-RL to di-RL plays a significant role in determining its performance. Therefore, strains whose production of mono-RL and di-RL are manuplable, have advantage on applications in various scenarios. In this study, we developed a rhlC deletion mutant strain in Pseudomonas aeruginosa PAO1, which produced primarily mono-RL. Subsequently, we generated two complemented strains by integrating the arabinose-induced PBAD-rhlC gene, either directly into the chromosomes or expressing it on plasmids. Our results indicate that the ratio of mono-RL to di-RL synthesized by the complemented strain gradually decreased as the concentration of arabinose (the inducer) increased. Consequently, there was a decrease in emulsification ability and an increase in surface tension and critical micelle concentration (CMC) of the corresponding rhamnolipids. The complemented strains without inducer can produce a small amount of di-rhamnolipids, which enhanced the surfactant properties. Notably, the rhamnolipids induced by 0.10% arabinose exhibited the most potent antibacterial effect.


Assuntos
Arabinose , Glicolipídeos , Glicolipídeos/farmacologia , Antibacterianos/farmacologia , Tensoativos/farmacologia , Pseudomonas aeruginosa/genética
6.
Sci Total Environ ; 921: 171143, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38387592

RESUMO

Effectively identifying persistent organic pollutants (POPs) with extensive organic chemical datasets poses a formidable challenge but is of utmost importance. Leveraging machine learning techniques can enhance this process, but previous models often demanded advanced programming skills and high-end computing resources. In this study, we harnessed the simplicity of PyCaret, a Python-based package, to construct machine-learning models for POP screening based on 2D molecular descriptors. We compared the performance of these models against a deep convolutional neural network (DCNN) model. Utilising minimal Python code, we generated several models that exhibited superior or comparable performance to the DCNN. The most outstanding performer, the Light Gradient Boosting Machine (LGBM), achieved an accuracy of 96.20 %, an AUC of 97.70 %, and an F1 score of 82.58 %. This model outshone the DCNN model. Furthermore, it excelled in identifying POPs within the REACH PBT and compiled industrial chemical lists. Our findings highlight the accessibility and simplicity of PyCaret, requiring only a few lines of code, rendering it suitable for non-computing professionals in environmental sciences. The ability of low code machine learning tools (e.g. PyCaret) to facilitate model comparison and interpretation holds promise, encouraging prompt assessment and management of chemical substances.

7.
Environ Pollut ; 346: 123609, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38395134

RESUMO

3-bromine carbazole (3-BCZ) represents a group of emerging aromatic disinfection byproducts (DBP) detected in drinking water; however, limited information is available regarding its potential cardiotoxicity. To assess its impacts, zebrafish embryos were exposed to 0, 0.06, 0.14, 0.29, 0.58, 1.44 or 2.88 mg/L of 3-BCZ for 120 h post fertilization (hpf). Our results revealed that ≥1.44 mg/L 3-BCZ exposure induced a higher incidence of heart malformation and an elevated pericardial area in zebrafish larvae; it also decreased the number of cardiac muscle cells and thins the walls of the ventricle and atrium while increasing cardiac output and impeding cardiac looping. Furthermore, 3-BCZ exposure also exhibited significant effects on the transcriptional levels of genes related to both cardiac development (nkx2.5, vmhc, gata4, tbx5, tbx2b, bmp4, bmp10, and bmp2b) and cardiac function (cacna1ab, cacna1da, atp2a1l, atp1b2b, atp1a3b, and tnnc1a). Notably, N-acetyl-L-cysteine, a reactive oxygen species scavenger, may alleviate the failure of cardiac looping induced by 3-BCZ but not the associated cardiac dysfunction or malformation; conversely, the aryl hydrocarbon receptor agonist CH131229 can completely eliminate the cardiotoxicity caused by 3-BCZ. This study provides new evidence for potential risks associated with ingesting 3-BCZ as well as revealing underlying mechanisms responsible for its cardiotoxic effects on zebrafish embryos.


Assuntos
Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Proteínas de Peixe-Zebra/genética , Coração , Bromo/farmacologia , Cardiotoxicidade , Receptores de Hidrocarboneto Arílico/genética , Larva , Desinfecção , Embrião não Mamífero
8.
Molecules ; 29(2)2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38257310

RESUMO

The unrestricted utilization of antibiotics poses a critical challenge to global public health and safety. Levofloxacin (LEV) and sulfaphenazole (SPN), widely employed broad-spectrum antimicrobials, are frequently detected at the terminal stage of water treatment, raising concerns regarding their potential conversion into detrimental disinfection byproducts (DBPs). However, current knowledge is deficient in identifying the potential DBPs and elucidating the precise transformation pathways and influencing factors during the chloramine disinfection process of these two antibiotics. This study conducts a comprehensive analysis of reaction pathways, encompassing piperazine ring opening/oxidation, Cl-substitution, OH-substitution, desulfurization, and S-N bond cleavage, during chloramine disinfection. Twelve new DBPs were identified in this study, exhibiting stability and persistence even after 24 h of disinfection. Additionally, an examination of DBP generation under varying disinfectant concentrations and pH values revealed peak levels at a molar ratio of 25 for LEV and SPN to chloramine, with LEV contributing 11.5% and SPN 23.8% to the relative abundance of DBPs. Remarkably, this research underscores a substantial increase in DBP formation within the molar ratio range of 1:1 to 1:10 compared to 1:10 to 1:25. Furthermore, a pronounced elevation in DBP generation was observed in the pH range of 7 to 8. These findings present critical insights into the impact of the disinfection process on these antibiotics, emphasizing the innovation and significance of this research in assessing associated health risks.


Assuntos
Levofloxacino , Purificação da Água , Levofloxacino/farmacologia , Sulfafenazol , Cloraminas/farmacologia , Desinfecção , Antibacterianos/farmacologia
9.
Ecotoxicol Environ Saf ; 269: 115739, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38016191

RESUMO

The root-associated microbiome assembly substantially promotes (hyper)accumulator plant growth and metal accumulation and is influenced by multiple factors, especially host species and environmental stress. Athyrium wardii (Hook.) is a phytostabilizer that grows in lead (Pb)-zinc (Zn) mine tailings and shows high root Pb accumulation. However, there remains little information on the assembly of the root-associated microbiome of A. wardii and its role in phytostabilization. A field study investigated the structural and functional variation in the root-associated bacterial microbiome of Athyrium wardii (Hook.) exposed to different levels of contamination in Pb-Zn mine tailings. The root compartment dominated the variation in the root-associated bacterial microbiome but the levels of contaminants showed less impact. Bacterial co-occurrence was enhanced in the rhizosphere soil and rhizoplane but tended to be much simpler in the endosphere in terms of network complexity and connectivity. This indicates that the microbial community assembly of A. wardii was non-random and shaped by root selective effects. Proteobacteria, Chloroflexi, Actinobacteria, Cyanobacteria, and Acidobacteriota were generally the dominant bacterial phyla. The genera Crossiella and Bradyrhizobium were enriched in the rhizosphere and cyanobacterial genera were enriched in the endosphere, demonstrating substantial advantages to plant survival and adaptation in the harsh mine environment. Functional categories involved in amino acid and carbohydrate metabolism were abundant in the rhizosphere soil, thus contributing to metal solubility and bioavailability in the rhizosphere. Membrane transporters, especially ATP-binding cassette transporters, were enriched in the endosphere, indicating a potential role in metal tolerance and transportation in A. wardii. The study shows substantial variation in the structure and function of microbiomes colonizing different compartments, with the rhizosphere and endophytic microbiota potentially involved in plant metal tolerance and accumulation during phytostabilization.


Assuntos
Microbiota , Traqueófitas , Chumbo/toxicidade , Chumbo/metabolismo , Plantas , Bactérias , Zinco/toxicidade , Zinco/metabolismo , Solo/química , Rizosfera , Raízes de Plantas/metabolismo , Microbiologia do Solo
10.
World J Gastroenterol ; 29(41): 5683-5698, 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-38077157

RESUMO

BACKGROUND: Extrahepatic cholangiocarcinoma sarcoma is extremely rare in clinical practice. These cells consist of both epithelial and mesenchymal cells. Patient-derived cell lines that maintain tumor characteristics are valuable tools for studying the molecular mechanisms associated with carcinosarcoma. However, cholangiocarcinoma sarcoma cell lines are not available in cell banks. AIM: To establish and characterize a new extrahepatic cholangiocarcinoma sarcoma cell line, namely CBC2T-2. METHODS: We conducted a short tandem repeat (STR) test to confirm the identity of the CBC2T-2 cell line. Furthermore, we assessed the migratory and invasive properties of the cells and performed clonogenicity assay to evaluate the ability of individual cells to form colonies. The tumorigenic potential of CBC2T-2 cells was tested in vivo using non-obese diabetic/severe combined immunodeficient (NOD/SCID) mice. The cells were injected subcutaneously and tumor formation was observed. In addition, immunohistochemical analysis was carried out to examine the expression of epithelial marker CK19 and mesenchymal marker vimentin in both CBC2T-2 cells and xenografts. The CBC2T-2 cell line was used to screen the potential therapeutic effects of various clinical agents in patients with cholangiocarcinoma sarcoma. Lastly, whole-exome sequencing was performed to identify genetic alterations and screen for somatic mutations in the CBC2T-2 cell line. RESULTS: The STR test showed that there was no cross-contamination and the results were identical to those of the original tissue. The cells showed round or oval-shaped epithelioid cells and mesenchymal cells with spindle-shaped or elongated morphology. The cells exhibited a high proliferation ratio with a doubling time of 47.11 h. This cell line has migratory, invasive, and clonogenic abilities. The chromosomes in the CBC2T-2 cells were polyploidy, with numbers ranging from 69 to 79. The subcutaneous tumorigenic assay confirmed the in vivo tumorigenic ability of CBC2T-2 cells in NOD/SCID mice. CBC2T-2 cells and xenografts were positive for both the epithelial marker, CK19, and the mesenchymal marker, vimentin. These results suggest that CBC2T-2 cells may have both epithelial and mesenchymal characteristics. The cells were also used to screen clinical agents in patients with cholangiocarcinoma sarcoma, and a combination of paclitaxel and gemcitabine was found to be the most effective treatment option. CONCLUSION: We established the first human cholangiocarcinoma sarcoma cell line, CBC2T-2, with stable biogenetic traits. This cell line, as a research model, has a high clinical value and would facilitate the understanding of the pathogenesis of cholangiocarcinoma sarcoma.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Sarcoma , Camundongos , Animais , Humanos , Vimentina , Linhagem Celular Tumoral , Camundongos SCID , Camundongos Endogâmicos NOD , Sarcoma/genética , Sarcoma/patologia , Colangiocarcinoma/genética , Colangiocarcinoma/patologia , Neoplasias dos Ductos Biliares/patologia , Ductos Biliares Intra-Hepáticos/patologia
11.
Biofilm ; 6: 100155, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37928620

RESUMO

Biofilms are complex microbial communities embedded in extracellular matrix. Pathogens within the biofilm become more resistant to the antibiotics than planktonic counterparts. Novel strategies are required to encounter biofilms. Exopolysaccharides are one of the major components of biofilm matrix and play a vital role in biofilm architecture. In previous studies, a glycosyl hydrolase, PslGPA, from Pseudomonas aeruginosa was found to be able to inhibit biofilm formation by disintegrating exopolysaccharide in biofilms. Here, we investigate the potential spectrum of PslG homologous protein with anti-biofilm activity. One glycosyl hydrolase from Pseudomonas fluorescens, PslGPF, exhibits anti-biofilm activities and the key catalytic residues of PslGPF are conserved with those of PslGPA. PslGPF at concentrations as low as 50 nM efficiently inhibits the biofilm formation of P. aeruginosa and disassemble its preformed biofilm. Furthermore, PslGPF exhibits anti-biofilm activity on a series of Pseudomonads, including P. fluorescens, Pseudomonas stutzeri and Pseudomonas syringae pv. phaseolicola. PslGPF stays active under various temperatures. Our findings suggest that P. fluorescens glycosyl hydrolase PslGPF has potential to be a broad spectrum inhibitor on biofilm formation of a wide range of Pseudomonads.

13.
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue ; 35(10): 1106-1110, 2023 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-37873719

RESUMO

Critical care ultrasound has many operational advantages such as visualization, reproducibility, noninvasiveness, and real-time dynamic monitoring, and is now widely used in the treatment process of various clinical diseases. Sepsis is a life-threatening organ dysfunction caused by a dysregulated host response to infection. On the basis of active anti-infection, early administration of fluid resuscitation to maintain organ tissue perfusion and individualized adjustment of volume management is the core of improving patient prognosis and reducing mortality. Currently, there are many shortcomings in the commonly used clinical physical examination and static parameters to assess volume status. Critical care ultrasound has many advantages in volume management of sepsis due to its diversified advantages, which promoted the development of critical care medicine. This article presents a review of critical care ultrasound in volume management in sepsis, aiming to highlight the value and limitations of the application of critical care ultrasound in volume management in sepsis.


Assuntos
Sepse , Humanos , Reprodutibilidade dos Testes , Sepse/diagnóstico por imagem , Sepse/terapia , Cuidados Críticos , Hidratação
14.
Cell Host Microbe ; 31(9): 1481-1493.e6, 2023 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-37659410

RESUMO

CRISPR RNAs (crRNAs) and Cas proteins work together to provide prokaryotes with adaptive immunity against genetic invaders like bacteriophages and plasmids. However, the coordination of crRNA production and cas expression remains poorly understood. Here, we demonstrate that widespread modulatory mini-CRISPRs encode cas-regulating RNAs (CreRs) that mediate autorepression of type I-B, I-E, and V-A Cas proteins, based on their limited complementarity to cas promoters. This autorepression not only reduces autoimmune risks but also responds to changes in the abundance of canonical crRNAs that compete with CreR for Cas proteins. Furthermore, the CreR-guided autorepression of Cas proteins can be alleviated or even subverted by diverse bacteriophage anti-CRISPR (Acr) proteins that inhibit Cas effectors, which, in turn, promotes the generation of new Cas proteins. Our findings reveal a general RNA-guided autorepression paradigm for diverse Cas effectors, shedding light on the intricate self-coordination of CRISPR-Cas and its transcriptional counterstrategy against Acr proteins.


Assuntos
Bacteriófagos , Bacteriófagos/genética , Regiões Promotoras Genéticas , RNA , RNA Guia de Sistemas CRISPR-Cas
15.
J Environ Manage ; 347: 119073, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37776795

RESUMO

The efficiency of microbial populations in degrading refractory pollutants and the impact of adverse environmental factors often presents challenges for the biological treatment of azo dyes. In this study, the genome analysis and azo dye Reactive Black 5 (RB5) degrading capability of a newly isolated strain, Shewanella sp. SR1, were investigated. By analyzing the genome, functional genes involved in dye degradation and mechanisms for adaptation to low-temperature and high-salinity conditions were identified in SR1. The addition of co-substrates, such as glucose and yeast extract, significantly enhanced RB5 decolorization efficiency, reaching up to 87.6%. Notably, SR1 demonstrated remarkable robustness towards a wide range of NaCl concentrations (1-30 g/L) and temperatures (10-30 °C), maintaining efficient decolorization and high biomass concentration. The metabolic pathways of RB5 degradation were deduced based on the metabolites and genes detected in the genome, in which the azo bond was first cleaved by FMN-dependent NADH-azoreductase and NAD(P)H-flavin reductase, followed by deamination, desulfonation, and hydroxylation mediated by various oxidoreductases. Importantly, the degradation metabolites exhibited reduced toxicity, as revealed by toxicity analysis. These findings highlighted the great potential of Shewanella sp. SR1 for bioremediation of wastewaters contaminated with azo dyes.


Assuntos
Compostos Azo , Shewanella , Biodegradação Ambiental , Compostos Azo/química , Shewanella/genética , Shewanella/metabolismo , Anaerobiose , Corantes/química
16.
Sci Total Environ ; 903: 166250, 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-37574066

RESUMO

Tea (Camellia sinensis L.) plant is fluoride (F) hyperaccumulator. The decomposition of pruned litter in tea plantations releases a large amount of F back into the soil. However, the effect of pruned litter return on soil F bioavailability has remained unclear. We investigated the decomposition dynamics of pruned litter from four tea varieties (Chuannong Huangyazao, Chuancha No. 3, Chuanmu No. 217 and C. sinensis 'Fuding Dabaicha') and its effect on soil F bioavailability. The decomposition of pruned litter occurred in two distinct periods, with an early period of rapid decomposition during the first 120 days, releasing 26-33 % of F, followed by a late period of slow decomposition during 120-360 days, releasing 2-9 % of F. The decomposition of pruned litter enhanced soil F bioavailability by increasing the concentrations of soil water-soluble F (WS-F), exchangeable F (EX-F), and organic matter-bound F (OR-F). The increase in WS-F, EX-F, and OR-F concentrations was higher than the amount of F released from pruned litter, suggesting that the increases in soil F availability did not solely originate from the release of F from pruned litter. The findings reveal the pathway of pruned litter decomposition priming soil F bioavailability through both the direct release of F and transformation from other fractions. Furthermore, the traits (C, N, lignin, and cellulose) of pruned litter from different tea varieties were the dominant factors controlling F release and soil F bioavailability. Compared with other tea varieties, the pruned litter of Chuanmu No. 217 with low lignin and cellulose content promoted higher mass loss and F release, resulting in the highest soil F bioavailability. These findings provide new insights into the mechanisms underlying the accumulation of bioavailable F in soil. These insights offer valuable support for devising effective management strategies for the incorporation of pruned litter into soil.

17.
J Hazard Mater ; 460: 132276, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37625294

RESUMO

Radial transport of cadmium (Cd) in roots governs the amount of Cd loaded into xylem vessels, where Cd ions are translocated upward into shoots, while the mechanism of differential Cd radial transport between the high Cd-accumulating rice line Lu527-8 and the normal rice line Lu527-4 remains ambiguous. A higher Cd distribution in cross sections and root apoplast and higher bypass flow of Cd were found in Lu527-8, explaining a greater Cd translocation through the apoplastic pathway. The lower relative area of the epidermis and the constant relative area of the cortex in Lu527-8 opened-up root radial transport for Cd. Deposition of apoplastic barriers (Casparian strips and suberin lamellae) was stimulated by Cd, which effectively prevented Cd from entering the stele through the apoplastic pathway. In Lu527-8, apoplastic barriers were further from the root apex with lower expression of genes responsible for biosynthesis of Casparian strips and suberin lamellae, enhancing radial transport of Cd. Our data revealed that the higher radial apoplastic transport of Cd played an integral role in Cd translocation, contributed to a better understanding of the mechanism involved in high Cd accumulation in Lu527-8 and helped achieve the practical application of phytoextraction.


Assuntos
Oryza , Cádmio , Parede Celular , Córtex Cerebral , Transporte de Íons
18.
Microbiome ; 11(1): 196, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37644507

RESUMO

BACKGROUND: Methane (CH4) is a major greenhouse gas, and ruminants are one of the sources of CH4 which is produced by the rumen microbiota. Modification of the rumen microbiota compositions will impact the CH4 production. In this study, the effects of melatonin on methane production in cows were investigated both in the in vitro and in vivo studies. RESULTS: Melatonin treatment significantly reduced methane production in both studies. The cows treated with melatonin reduced methane emission from their respiration by approximately 50%. The potential mechanisms are multiple. First, melatonin lowers the volatile fatty acids (VFAs) production in rumen and reduces the raw material for CH4 synthesis. Second, melatonin not only reduces the abundance of Methanobacterium which are responsible for generating methane but also inhibits the populations of protozoa to break the symbiotic relationship between Methanobacterium and protozoa in rumen to further lowers the CH4 production. The reduced VFA production is not associated with food intake, and it seems also not to jeopardize the nutritional status of the cows. This was reflected by the increased milk lipid and protein contents in melatonin treated compared to the control cows. It is likely that the energy used to synthesize methane is saved to compensate the reduced VFA production. CONCLUSION: This study enlightens the potential mechanisms by which melatonin reduces rumen methane production in dairy cows. Considering the greenhouse effects of methane on global warming, these findings provide valuable information using different approaches to achieve low carbon dairy farming to reduce the methane emission. Video Abstract.


Assuntos
Melatonina , Feminino , Animais , Bovinos , Melatonina/farmacologia , Rúmen , Agricultura , Carbono , Metano
19.
Risk Manag Healthc Policy ; 16: 1273-1285, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37456826

RESUMO

Background: The omicron pandemic in Shanghai has created unprecedented challenges for pediatric medical institutions, and the work of pediatric nurses has changed rapidly due to the introduction of parent-child treatment. This study aimed to explore the experiences of pediatric nurses in the parent-child isolation unit of COVID-19-designated hospitals and provide a basis for developing feasible interventions as the next step. Methods: Using phenomenological research methods, 12 nurses working in the parent-child isolation unit of Shanghai Children's Medical Center affiliated with Shanghai Jiao Tong University School of Medicine from April 1, 2022, to June 15, 2022, were selected by purposive sampling. Semi-structured interviews and data analysis were conducted using Colaizzi's 7-step analysis. Results: Data analysis revealed three major themes and 11 subthemes. The main themes were "risk factors", "protection factors", and "resilience strategies". The sub-themes were "challenge of caring for both adults and children simultaneously", "lack of adult expertise leads to inadequate coping skills", "change in the care population increased communication difficulties", "physical and psychological distress", "social support", "social recognition", "awareness of responsibilities and roles", "team coming together", "hunger for knowledge", "health promotion", and "psychological adjustment strategies". Conclusion: Hospital managers should optimize hospital management strategies, pay attention to multi-departmental and multidisciplinary team cooperation, reduce the burden on pediatric nurses, improve the work and rest environment, mobilize the hospital support system, and maintain nurse's physical and mental health, establish a warm parent-child isolation unit encourages nurses to listen to the patients' voices and adopt diversified communication methods, and strengthen the publicity of the nursing profession, improve social support and recognition, and enhance the sense of self-worth and mission.

20.
BMC Infect Dis ; 23(1): 496, 2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37501181

RESUMO

BACKGROUD: The proportion of HIV-infected students in China showed an increasing trend. This study aimed to identify the epidemiological characteristics and the HIV care continuum for HIV-infected students in Shandong Province, China. METHODS: Case report and follow-up data of HIV-infected students were obtained from the National HIV/AIDS comprehensive response information management system. Logistic regression analyses were used to analyze the associating factors of HIV-infected students accepting CD4 + T cells (CD4) test and antiviral therapy (ART) in 30 days, and ArcGIS software was used for the spatial anlysis. RESULTS: From 2017 to 2019, 403 HIV-infected students were reported in Shandong Province. The majority of them were male (99.5%) and transmitted through homosexual sexual activity(92.1%). Most of them lived in Jinan city and Qingdao city. 68.5% (276 cases) accepted CD4 test in 30 days, and 48.6% (196 cases) started ART in 30 days. The heterosexual transmitted cases (AOR = 0.458, 95%CI: 0.210-0.998), patients accepting HIV care in western area (AOR = 0.266,95%CI: 0.147-0.481) were less likely to test CD4 within 30 days; patients aged 23-25 (AOR = 2.316, 95%CI: 1.009-5.316) and patients who had tested CD4 within 30 days (AOR = 4.377; 95%CI: 2.572-7.447) prefered to receive ART within 30 days; patients accepted HIV care in central area (AOR = 0.407; 95%CI: 0.251-0.657) and western area (AOR = 0.508; 95%CI: 0.261-0.989) and patients diagnosed by voluntary blood donation (AOR = 0.352; 95%CI: 0.144-0.864) were less willing to receive ART in 30 days. CONCLUSIONS: The HIV care continuum of HIV-infected students in Shandong Province still needed strenghthing. More health education and case management should be done for cases transmitted through heterosexual behavior, accepted HIV care in central and western area, and diagnosed by voluntary blood donation.


Assuntos
Infecções por HIV , Humanos , Masculino , Feminino , Infecções por HIV/tratamento farmacológico , Infecções por HIV/epidemiologia , Estudos Retrospectivos , China/epidemiologia , Continuidade da Assistência ao Paciente , Estudantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...